Biotechnology Processes for Scalable, Selective Rare Earth Element Recovery
نویسندگان
چکیده
Biorecovery of rare earth elements (REE) from wastes and ores is achieved by bacteria using biogenic phosphates. One approach uses an enzyme that biomineralises REE phosphate crystals into the extracellular polymeric matrix (EPM). The enzyme, co-localised in the EPM, provides a continuous phosphate feed into biomineralisation. The bacteria can be immobilised in a column, allowing continuous metal removal. Metals biocrystallise at different rates. By choosing suitable conditions and column flow rates selective recovery of REE against uranium and thorium can potentially overcome a bottleneck in recovery of REE from mine tailings and ore leachates co-contaminated with these radionuclides. Another approach to REE recovery first lays down calcium phosphate as hydroxyapatite (Bio-HA) using the enzymatic process. Bio-HA then captures REE, loading REE of up to 84% of the HA-mass. REE3+ first localises at the grain boundaries of the small bio-crystallites and then substitutes for Ca2+ stoichiometrically within the HA. After REE capture the bio-HA/REE hybrid can be separated magnetically. A wider concept: using a ‘priming’ deposit of one mineral to facilitate the capture of REEs, has been shown, potentially providing a basis for selective REE recovery which would provide advantages over the > 100 steps currently used in commercial REE refining.
منابع مشابه
A Study on Neodymium Recovery from Aqueous Solutions for Designing a New Generation of Sandwich Liquid Membrane
Liquid Membrane (LM) based processes, as Supported Liquid Membranes (SLMs), have been proposed, for over 30 years, as effective methods for the selective separation of inorganic/organic species from different water streams. The industrial use of SLMs has been limited mainly by their insufcient stability. To investigate on the main cause of system destabilization and the o...
متن کاملMechanical activation of phosphate concentrates to enhance dissolution efficiency of rare earth elements from a kinetic viewpoint
The Esfordi phosphate concentrate mainly contains fluorapatite, monazite, and xenotime as rare earth element (REE) minerals, accounting for 1.5% of rare earth metals. The monazite and xenotime minerals are refractory and their decomposition is only possible at high temperatures. Thus mechanical activation was used in the present work for this purpose. After 90 minutes of mechanical activation, ...
متن کاملProduction of titanium tetrachloride (TiCl4) from titanium ores: A review
Titanium (Ti) is the ninth most abundant element on earth. The titanium mineral ores are widely distributed in different parts of the world. The two main ores of titanium include rutile (TiO2) and ilmenite (FeO.TiO2). It is aimed to provide the readers with an insight to the main processes currently employed to extract and recover titanium tetrachloride (TiCl4) from different titanium ores. Due...
متن کاملRecovery of critical metals using biometallurgy.
The increased development of green low-carbon energy technologies that require platinum group metals (PGMs) and rare earth elements (REEs), together with the geopolitical challenges to sourcing these metals, has spawned major governmental and industrial efforts to rectify current supply insecurities. As a result of the increasing critical importance of PGMs and REEs, environmentally sustainable...
متن کاملBioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries.
This review describes the historical development and current state of metals leaching and sulfide mineral biooxidation by the minerals industries. During the past 20 years commercial processes employing microorganisms for mineral recovery have progressed from rather uncontrolled copper dump leaching to mineral oxidation and leaching in designed bioheaps for oxidation of refractory gold ores and...
متن کامل